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Abstract
We develop a method that allows us to derive reductions and solutions to
hyperbolic systems of partial differential equations. The method is based on
using functions that are constant in the direction of characteristics of the system.
These functions generalize well-known Riemann invariants. As applications we
consider the gas dynamics system and ideal magnetohydrodynamics equations.
In special cases, we find solutions of these equations depending on some
arbitrary functions.

PACS numbers: 02.30.Jr, 02.30.Ik, 47.65.+a
Mathematics Subject Classification: 35A30, 35C05, 35L60

1. Introduction

One of the first methods for finding solutions to the nonlinear partial differential equation

F(x, y, u, ux, uy, uxx, uxy, uyy) = 0 (1)

was proposed by Monge and was then further improved by Ampere. The method was described
in detail in the classic books of Goursate [1] and Forsyth [2]. To apply this method, one must
find an equation of the first order

f (x, y, u, ux, uy) = c, c ∈ R (2)

such that every solution of (2) satisfies equation (1) for arbitrary c. In this case the function f

is called a first integral of equation (1). To find first integrals, we need to look for functions
which are constant in the direction of characteristics of equation (1). If there are two first
integrals f1 and f2 for a given family of characteristics, then integration of equation (1) reduces
to solving the first-order equation

G(f1, f2) = 0,

with G being an arbitrary function.

0305-4470/05/143133+12$30.00 © 2005 IOP Publishing Ltd Printed in the UK 3133
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In 1870, Darboux [3] announced a generalization of the Monge–Ampere method. He
proposed to seek an additional partial differential equation of second order (or higher)

g(x, y, u, ux, uy, uxx, uxy, uyy) = c (3)

such that the system of equations (1) and (3) is in involution for all c. The function g

turns out to be constant along a family of characteristics of equation (1). In this case, the
function g is called a characteristic invariant of (1). When partial differential equation (1)
has a sufficient number of characteristic invariants, it can be reduced to a system of ordinary
differential equations. The detailed description of the Darboux method is also given in the
above-mentioned books [1, 2].

Although equations that are integrable by Darboux’s method arise rarely, they are of great
interest. Vessiot [4, 5] classified all equations of type

uxy = w(x, y, u, ux, uy)

integrable by this method and found a general solution for every equation obtained. Recently,
there was a renewed interest in the method of Darboux that was studied in [6–11].

It is possible to consider the left-hand side of (3) as a differential invariant of some
formal vector field generalized by characteristics of equation (1). The differential invariants
of vector fields have their origins in the works of Lie. The detailed description of the classical
theory of the differential invariants can be found in [12]. Fels and Olver have discovered new
applications of the differential invariants in the moving frame theory [13, 14].

In this paper, we consider systems of partial differential equations in two and n independent
variables. In section 2, we introduce an operator of differentiation in the direction of
characteristics of the system and corresponding invariants of characteristics of order k. We
prove that if a function h defined on the kth order jet space J (k) is constant along a vector
field on the solutions of the system of partial differential equations, then this function is an
invariant of characteristics. In section 3, we describe the Darboux method for systems of
partial differential equations in two independent variables and give its applications to the gas
dynamics system and magnetohydrodynamics equations. We use invariants of characteristics
to reduce these systems and find solutions depending on some arbitrary functions.

2. Invariants of characteristics

Let us begin with a system of first-order partial differential equations in two independent and
m dependent variables

ut + F(t, x, u, ux) = 0, (4)

where u = (u1, . . . , um), ut = (
u1

t , . . . , u
m
t

)
, ux = (

u1
x, . . . , u

m
x

)
and F = (F 1, . . . , Fm).

One may emphasize that the function F can be nonlinear in ux .
We denote by Dt and Dx the total derivatives with respect to t and x. Consider the

differential operator

Dt + λDx, (5)

whose coefficient λ can depend on t, x, u and ux . The operator (5) is an operator of
differentiation in the direction of characteristics of system (4), if the coefficient λ satisfies
the equation

det

(
∂(F )

∂(ux)
− λE

)
= 0, (6)

where ∂(F )

∂(ux)
= ∂(F 1,...,Fm)

∂(u1
x ,...,u

m
x )

is the Jacobi matrix and E is the identity matrix.
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System (4) is hyperbolic if all eigenvalues of the matrix ∂(F )

∂(ux)
are real and there are m

corresponding eigenvectors. The characteristic curves φ(t, x) = const are defined as solutions
of equation φt + λφx = 0. The theory of nonlinear hyperbolic systems is described in [15].

Suppose ui
k is the partial derivative of order k of the function ui with respect to x, then

uk = (
u1

k, . . . , u
m
k

)
stands for the vector composed of these derivatives. Let L be an operator

of the differentiation in the direction of characteristics of system (4). According to [11], a
function h(t, x, u, . . . , uk) defined on the kth order jet space J (k) is called an invariant of
characteristics of order k of system (4) corresponding to the operator L, if h is a solution of
the equation

L(h)|[S] = 0. (7)

Here [S] means system (4) and its differential consequences with respect to x. When system
(4) has the Riemann invariants, they are zero-order invariants of characteristics.

Some systems have invariants of characteristics of arbitrary order. For example, consider
a one-dimensional system of gas dynamics equations [16]:

ut + uux + px/ρ = 0, ρt + (ρu)x = 0, st + usx = 0, (8)

where u, ρ, p and s are the velocity, the density, the pressure and the entropy. The equation of
state is given by the function p = p(ρ, s). The operators of the differentiation in the direction
of characteristics of system (8) are

L1 = Dt + uDx, L2 = Dt + (u + c)Dx, L3 = Dt + (u − c)Dx, (9)

with c = √
∂p/∂ρ being the speed of sound. Obviously, the entropy s is an invariant of

characteristics corresponding to the operator L1. It is easy to check that the operator 1
ρ
Dx

commutes with L1 by virtue of the second equation of system (8). This implies that the
recurrent formula

In+1 = 1

ρ
Dx(In), n = 0, 1, . . .

gives the invariants of characteristics corresponding to the operator L1. We will show in
section 3 that invariants of characteristics corresponding to the operators L2 and L3 exist only
for the special equations of state.

It can be proved [11] that if h1 and h2 are invariants of characteristics of system (4)
corresponding to the operator L, then both an arbitrary function f (h1, h2) and h = Dxh1

Dxh2
are

invariants of characteristics.

Lemma 1. Let L be an operator of form (5). Suppose that a function h(t, x, u, u1, . . . , un),
with n � 1, satisfies (7), then L is the operator of the differentiation in the direction of
characteristics of system (4) and h is an invariant of characteristics corresponding to the
operator L.

Proof. According to the condition of the theorem, h is a solution of the equation

Dth + λDxh|[S] = 0. (10)

Note that

Dxh �
m∑

i=1

ui
n+1hui

n
,

where the symbol � means that the difference between left- and right-hand sides contains no
derivatives of order greater than n. It is easy to see that the formula

Dth � −
∑

1�i,j�m

u
j

n+1F
i

u
j

1
hui

n



3136 O V Kaptsov and A V Zabluda

is correct because of system (4). From equation (10) we have

−
∑

1�i,j�m

u
j

n+1F
i

u
j

1
hui

n
+ λ

m∑
i=1

ui
n+1hui

n
� 0.

This yields m equations
m∑

j=1

(
F i

u
j

1
− δi

jλ
)
hui

n
= 0, i = 1, . . . , m,

with δi
j the Kronecker symbol. Rewriting the above equation in the matrix form(

∂(F )

∂(ux)
− λE

) (
hu1

n
, . . . , hum

n

)t = 0,

where
(
hu1

n
, . . . , hum

n

)t
is the transposed vector, we conclude that λ is a solution of

equation (6). �

We now consider the system of first-order partial differential equations in n+1 independent
and m dependent variables

ut + F
(
t, x, u, ux1 , . . . , uxn

) = 0, (11)

with x = (x1, . . . , xn), u = (u1, . . . , um), uxi
= (

u1
xi
, . . . , um

xi

)
and F = (F 1, . . . , Fm).

Let us denote by uk the set of kth order partial derivatives of the functions u1, . . . , um

with respect to x1, . . . , xn. We say that a function h(t, x, u, u1, . . . , uk) defined on the kth
order jet space J (k) is an invariant of characteristics of system (11) if h satisfies the equation

det

(
EDth +

m∑
i=1

∂(F )

∂(uxi
)
Dxi

h

)∣∣∣∣∣
[Sn]

= 0. (12)

Here Dt and Dxi
are the total derivatives with respect to t and xi, [Sn] means system (12)

and its differential consequences with respect to xi (i = 1, . . . , n), ∂(F )

∂(uxi
)

= ∂(F 1,...,Fm)

∂(u1
xi

,...,um
xi

)
is the

Jacobi matrix and E is an identity matrix.
An operator

L = Dt + λ1Dx1 + · · · + λnDxn
,

where λi can depend on t, x, u, u1, is called an operator of differentiation in the direction of
the vector field = (1, λ1, . . . , λn).

Theorem 1. Suppose that there is an operator L of differentiation in the direction of the vector
field = (1, λ1, . . . , λn) and a function h(t, x, u, u1, . . . , uk), with k � 1, such that

L(h)|[Sn] = 0,

then h is an invariant of characteristics of system (11).

Proof. Since h satisfies

Dth +
n∑

i=1

λiDxi
h|[Sn] = 0, (13)

the coefficients of (n + 1)th derivatives on the left-hand side of (13) must vanish. To find these
coefficients, we write Dxi

h up to kth derivatives:

Dx1h �
m∑

j=1

∑
|α|=k

u
j

α+11
h

u
j
α
, · · · , Dxn

h �
m∑

j=1

∑
|α|=k

u
j

α+1n
h

u
j
α
.
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Here u
j
α denotes the derivative

∂ |α|uj

∂x
α1
1 · · · ∂x

αn
n

of order k = |α| = α1 + · · · + αn, u
j

α+1i
is the derivative

∂ |α|+1uj

∂x
α1
1 · · · ∂x

αi+1
i · · · ∂x

αn
n

,

and the symbol � means that the difference between the left- and right-hand sides contains no
(k + 1)th derivatives. This yields

λ1Dx1h + · · · + λnDxn
h �

n∑
i=1

λi

m∑
j=1

∑
|α|=k

u
j

α+1i
h

u
j
α
.

On the other hand, we have

Dth|[Sn] � −
m∑

j=1

∑
|α|=k

Dα(F j )h
u

j
α

� −
m∑

j=1

∑
|α|=k

(
n∑

i=1

m∑
s=1

us
α+1i

F
j
us

xi

)
h

u
j
α
.

The above calculations lead to

Dth +
n∑

i=1

λiDxi
h|[Sn] � −

m∑
j=1

∑
|α|=k

[
n∑

i=1

(
m∑

s=1

us
α+1i

F j
uxs

i

− λiu
j

α+1i

)]
h

u
j
α

= 0.

It is convenient to represent the last relation in a matrix form
n∑

i=1

∑
|α|=k

uα+1i
Axi huα

= 0, (14)

with uα = (
u1

α, . . . , um
α

)
, huα

= (
hu1

α
, . . . , hum

α

)
and Axi = ∂(F )

∂(uxi
)
− λiE.

We need to prove that h is a solution of equation (12) which is equivalent to the following:

det

(
n∑

i=1

Axi Dxi
h

)
= 0. (15)

For this purpose, it is enough to show that the linear homogeneous system(
n∑

i=1

Axi Dxi
h

)
r = 0 (16)

has a nontrivial solution r. This solution is expressed in the form

r =
∑
|α|=k

(Dh)αhuα
, (17)

where (Dh)α = (
Dx1h

)α1 · · · (Dxn
h
)αn . Indeed, substituting (17) in the left-hand side of (13)

leads to (
n∑

i=1

Axi Dxi
h

)
∑

|α|=k

(Dh)αhuα


 =

n∑
i=1

∑
|α|=k

Axi (Dh)α+1i huα
. (18)

Note that the expressions including uα+1i
in (14) coincide with ones including (Dh)α+1i in

(18). Since the left-hand side of (14) is zero then (18) is equal to zero as well. Hence, (15) is
valid. �

When the conditions of the theorem are satisfied, we say that a function h defined on the
kth order jet space J (k) is constant along a vector field v = (1, λ1, . . . , λn) on the solutions of
system (11).
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3. The Darboux method and its applications

In this section, we will describe the Darboux method for systems of partial differential
equations and give relevant examples. The detailed description of applications of this approach
to second order partial differential equations in two independent variables is given in [1].

The Darboux method is based on using the invariants of characteristics. Let us consider
system (4) and assume that the corresponding equation (6) has m distinctive real roots
λ1, . . . , λm. If there are two functionally independent invariants of characteristics Ii, Ji for
all λi , then we can constitute a system of ordinary differential equations in the independent
variable x

f1(I1, J1) = 0, . . . , fm(Im, Jm) = 0, (19)

where f1, . . . , fm are arbitrary functions. It is necessary to look for the general solution of
systems (4) and (19). If we can find a general solution of (19), then substituting this solution
into (4) leads to a system of ordinary differential equations in the independent variable t. It is
enough to solve the last system in order to find the general solution of (4).

Remark 1. When equation (6) has a root of multiplicity k it is desirable to obtain k + 1
invariants J1, . . . , Jk+1 corresponding to this root. In this case, system (19) includes equations

f1(J2, J1) = 0, . . . , fk(Jk+1, J1) = 0.

Such an example arises naturally in the equations of magnetohydrodynamics.

As example, consider the system of gas dynamics equations in two independent variables
t and x:

ut + uux + px/ρ = 0, ρt + (ρu)x = 0, pt + upx + ρc2ux = 0. (20)

where ρ is the density, u is the velocity, p is the pressure and c(ρ, p) is the sound speed.
One can easily deduce zero-order invariants of characteristics of system (20)

corresponding to the operator L2 (or L3) given by (9). To do so, following [11], one must seek
all solutions of the equation

Dth + (u + c)Dxh|[G] = 0, (21)

where [G] stands for system (20) and its differential consequences with respect to x; the
function h can depend on t, x, u, ρ, p. Obviously, the left-hand side of (21 is a polynomial
of the first degree in ux, ρx, and px . Collecting similar terms of these variables leads to the
following equations:

hρ = 0, hu = ρchp, ht + (u + c)hx = 0. (22)

It follows from the first and second equations of (22) that a nonconstant solution h exists
only if

c = g(p)/ρ, (23)

with g an arbitrary function of p. As a consequence of the third equation, h is independent of
t and x. According to the second equation of (22), h is an arbitrary function of

I + = u +
∫

dp

g(p)
.

Similarly, it is possible to check that the Riemann invariant

I− = u −
∫

dp

g(p)

corresponds to the operator L3.
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We now use the invariant I− to derive solutions of system (20. Setting I− = 0 and
introducing a new function F = ∫ dp

g(p)
, we get the following representation:

u = F(p).

In this case, system (20) reduces to

ρt + (Fρ)x = 0, pt + Fpx +
px

F ′ρ
= 0. (24)

The previous system admits the Riemann invariants

p, r =
∫

(F ′)2 dp +
1

ρ
.

One then can rewrite system (24 in the form

pt +

(
F(p) − G(p) − r

F ′(p)

)
px = 0, rt + F(p)rx = 0,

where G(p) = ∫
(F ′(p))2 dp. Using the hodograph transformation leads to the linear system

xp − F(p)tp = 0, (F (p)F ′(p) − G(p) + r)tr − F ′(p)xr = 0.

From this system it is easy to obtain equation

F ′(p)tpr − F ′′(p)tr = 0.

The general solution of the above system is

t = P + R′F ′, x = R′(FF ′ + 1/ρ) − R +
∫

FP ′ dp, (25)

where P = P(p) and R = R(r) are arbitrary functions. As a consequence of (25), we obtain
a solution of (20) in the implicit form.

The equation of state which corresponds to (23) has the form

1

ρ
= H(s) + M(p),

where M ′ = − 1
g(p)2 and H is an arbitrary function. Using Martin’s variables [17] and one

intermediate integral, Zavyalov [18] found some solutions of one-dimensional gas dynamics
system with the previous equation of state. However, the corresponding solutions include
Martin’s variables. Note that Zavyalov’s solutions also depend on two arbitrary functions.

Let us try to find solutions of system (20) which depend on three arbitrary functions. It
was shown in [11] that the first-order invariants corresponding to the operators L2 and L3 exist
only if the speed sound is given by

c = (a + bp)(2/3)/ρ, a, b ∈ R.

The corresponding equation of state is

p(ρ, s) = −1

b

[
a +

(
3ρ

b (A(s)ρ − 1)

)3
]

,

the Riemann invariants are

I2 = bu + 3(a + bp)1/3, I3 = bu − 3(a + bp)1/3,

and the first-order invariants have the form

J2 = ρ(a + bp)1/3

ux(a + bp)2/3 + px

− bt

3
, J3 = ρ(a + bp)1/3

ux(a + bp)2/3 − px

− bt

3
.
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The invariants corresponding to the operator L1 = Dt + uDx (mentioned in section 2) are

I1 = b/ρ − 3(a + bp)−1/3, J1 = 1/ρDx(I1).

The gas dynamics system is conveniently written in terms of the Riemann invariants

(I1)t = −I2 + I3

2b
(I1)x,

(I2)t = I1
(
I 2

2 − I 2
3

) − 2I2M

36b
(I2)x, (26)

(I3)t = I1
(
I 2

2 − I 2
3

) − 2I3M

36b
(I3)x,

with M = I1(I2 − I3) + 18. The first-order invariants J1, J2 and J3 can be represented as

J1 = M

I2 − I3
(I1)x, J2 = t − 18b

M(I2)x
, J3 = t − 18b

M(I3)x
. (27)

We now apply the Darboux method to reduce system (26) to some ordinary differential
equations. The corresponding system (19) is equivalent to

J1 = F1(I1), J2 = F2(I2), J3 = F3(I3), (28)

where F1, F1 and F3 are arbitrary functions. From (26), (27) and (28) we get two systems of
ordinary differential equations:

(I1)x = F1(I1)(I2 − I3)

M
, (I2)x = 18b

M (t − F2(I2))
, (I3)x = 18b

M (t − F3(I3))
, (29)

and

(I1)t = −F1(I1)
(
I 2

2 − I 2
3

)
2Mb

,

(I2)t = I1
(
I 2

2 − I 2
3

) − 2I2M

2M(t − F2(I2))
, (30)

(I3)t = I1
(
I 2

2 − I 2
3

) − 2I3M

2M(t − F3(I3))
.

Introducing new functions

�(I1) =
∫

bI1

F1(I1)
dI1, Gi(Ii) =

∫
Fi(Ii) dIi, i = 2, 3,

one may write equations (29) in the following way:

[bx − �(I1)]x = 18b

M
, [tI2 − G2(I2)]x = 18b

M
, [tI3 − G3(I3)]x = 18b

M
.

Hence, system (29) has the first integrals

tI2 − G2(I2) − bx + �(I1) = c2(t), tI3 − G3(I3) − bx + �(I1) = c3(t),

with c2(t) and c3(t) being the arbitrary functions. Differentiating the previous relations with
respect to t and using system (30), we deduce that the functions c2(t) and c3(t) are constants.

Therefore, system (26) can be reduced to a couple of differential equations

(I1)x = bI1(I2 − I3)

� ′(I1) (I1(I2 − I3) + 18)
, (I1)t = − I1

(
I 2

2 − I 2
3

)
2� ′(I1)(I1(I2 − I3) + 18)

, (31)

where I2 and I3 must be expressed from relations

tI2 − G2(I2) − bx + �(I1) = 0, tI3 − G3(I3) − bx + �(I1) = 0.
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It is possible to find solutions of the gas dynamics equations by integrating equations (31) with
partial functions G2,G3 and �.

It is interesting to note that there are the second-order invariants of characteristics

I±
(4/5) = 3

5
t +

p1/5
(
5ρppxx ± 5p9/5uxx − 5pρxpx ∓ 5p9/5 − p8/5ρu2

x − 3ρp2
x

)
(p4/5ux ± px)3

,

I±
(2) = Gp3(ρuxG ± Gx)

ρ
,

with G = ρ

p2ux±px
, corresponding to the operators L± = Dt + (u ± c)Dx , when the speed

sound is given by one of the following formulae:

c = p4/5/ρ, c = p2/ρ.

We now consider the one-dimensional magnetohydrodynamics equations [19]

ρt + (ρu)x = 0,

ut + uux +
px

ρ
+

(
B2

2 + B3
2
)
x

8πρ
= 0,

vt + uvx = 0,

wt + uwx = 0,

(B2)t + (uB2)x = 0,

(B3)t + (uB3)x = 0,

st + usx = 0.

(32)

Here ρ is the density, p is the pressure and s is the entropy; (u, v,w) and (B1, B2, B3) denote
the velocity and the magnetic fields, respectively. We assume that B1 = 0 and p is a function
of ρ and s. In this case, there are the following invariants of characteristics:

I1 = s, I2 = v, I3 = w, I4 = B2

ρ
, I5 = B3

ρ
, J = sx

ρ
,

corresponding to the operator L1 = Dt + uDx .
Using these invariants we will reduce system (32) to the second-order equation for the

entropy. According to the general scheme of the Darboux method, we write

v = V (s), w = W(s), sx/ρ = f1(s), B2/ρ = f2(s), B3/ρ = f3(s),

where V,W, f1, f2 and f3 are arbitrary functions. These relations are equivalent to the
following representation:

v = V (s), w = W(s), ρ = sx	(s), B2 = sx
(s), B3 = sxF (s), (33)

with 	(s) = 1/f1(s),
(s) = f2(s)/f1(s) and F(s) = f3(s)/f1(s).
From the last equation of (32) we get

u = − st

sx

. (34)

Substituting (33) and (34) into system (32) one can check that six equations of (32) are satisfied
identically and only the second equation leads to

− 4πsx
2	(s)stt + 8πst sx	(s)stx +

(
4πsx

2	(s)p′
ρ + sx

3F(s)2 − 4πst
2	(s) + sx

3
(s)2) sxx

+ 4πsx
3p′

s + 4πsx
4p′

ρ	
′(s) + sx

5
(s)
′(s) + sx
5F(s)F ′(s) = 0. (35)

Suppose that the pressure has the following form:

p = G(s) − 
(s)2 + F(s)2

8π	(s)2 ρ2,
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where G is an arbitrary function, then equation (35) reduces to

sx
2stt − 2st sxstx + st

2sxx − G′(s)
	(s)

s3
x = 0. (36)

It is possible to find two intermediate integrals for equation (36)
st

sx

− G′(s)t
	(s)

= φ(s), x − st

sx

t +
G′(s)
2	(s)

t2 = ψ(s), (37)

with φ and ψ being arbitrary functions. Eliminating st/sx from (37) gives the implicit solution
of (36)

x + φ(s)t +
G′(s)
2	(s)

t2 = ψ(s). (38)

In the special cases one can express s from (38) and find the explicit solutions of the one-
dimensional magnetohydrodynamics equations (32). Note that other authors usually suppose
that the modified pressure p∗ = p +

(
B2

2 + B2
3

)/
8π is constant [20]. This means that the

function G is equal to zero. The general solution of (36) with G = 0 can be found in [1].
Now consider the system of two equations

ut + vx = 0, vt + f 2(x, v)ux = 0. (39)

This system arises in many areas of science and engineering relating to fluid mechanics and
nonlinear elasticity (see, for example, [15, 21]). We want to find characteristic invariants and
derive some solutions of system (39).

The operators of differentiation in the direction of characteristics of system (39) are

Dt ± f (v, x)Dx.

It can be shown that zero-order characteristic invariants exist if and only if f (v, x) =
1/F ′(av + bx) with F an arbitrary function. These invariants take the form

I± = au − tb ± F(av + bx), a, b ∈ R.

Introducing new functions r = I + and s = I−, we rewrite system (39) as follows:

rx + G(r − s)rt = 0, sx − G(r − s)st = 0,

with G(θ) = F ′(F−1(θ/2)). Using the hodograph transformation leads to the linear system

tr + G(r − s)xr = 0, ts − G(r − s)xs = 0.

From this system, it is easy to obtain the Euler–Darboux equation

xrs + g(r − s)(xr + xs) = 0,

where g(θ) = G′(θ)/2G(θ). It is possible to find general solution of this equation for
particular functions g [22]. For example, suppose that f (v, x) = (av + bx)2 then the general
implicit solution of system (39) is given by

x = R′ − S ′

r − s
, t = (R′ + S ′)(r − s) − 2(R − S)

4
,

where R = R(r) and S = S(s) are arbitrary functions.
If we set f (v, x) = xnvm then the first-order characteristic invariants exist if and only if

n = 2/3 or n = 4/3, with m = 2 − n. These invariants have the form

J±
(2/3) = ±u

3
− (x2v)−1/3 −

(v

x

)2/3 1

xvx ± x5/3v4/3ux − v
,

J±
(4/3) = ± t

3
−

(v

x

)1/3 1

xvx ± x7/3v2/3ux − v
.

The second-order characteristic invariants exist only when n = 2/3, n = 4/3, n = 4/5
and n = 6/5. The explicit expressions of these invariants are very unwieldy.
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4. Conclusion

In this paper, we have developed the method of integrating a system of first-order partial
differential equations in two independent variables. This method can be extended to the
hyperbolic system of high order equations. It is important that corresponding invariants
should exist for every family of characteristics of the system.

When the system includes equations in n (n � 3) independent variables then we face a
difficult task. As usual these systems have few invariants of characteristics. For example, the
two-dimensional unsteady gas dynamics equations admit only one invariant of characteristics,
namely the entropy. In three-dimensional case, Ertel’s integral is an additional invariant of
characteristics. Note that in the case of the two-dimensional steady gas dynamics equations,
Kaptsov [11] have founded a first-order invariant

J0 = Dy(IB)

sy

,

where IB is Bernoulli’s integral

IB = u2 + v2

2
+

∫
1

ρ
p′

ρ dρ.

Here, as usual, u and v are the components of velocity, p is the pressure, ρ is the density and
s is the entropy.

There are problems that we have not yet studied. For example, it is interesting to look
for new solutions of the one-dimensional gas dynamics equations (20) using the second-
order invariants (I±

(4/5) and I±
(2)), give interpretation to some founded solutions, and apply the

Darboux method to other hyperbolic systems. The other important problem we have not yet
considered deals with nonlocal characteristic invariants. One can check that the functions

I± = ξ − vt − xu ∓ F
(v

x

)
are nonlocal characteristic invariants of system (39), with f (v, x) = x2/F ′ ( v

x

)
. Here, the

variable ξ(v, x) satisfies the following relations:

ξv = t, ξx = u.

To simplify calculations, we have implemented the package of analytical computations which
derives characteristics and their invariants for the given system.
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[5] Vessiot E 1941 Sur les équations aux dérivées partielles du second order F(x, y, u, p, q, r, s, t) = 0 intérgable
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